Чертежи свободного тела - это метод, который помогает визуализировать векторы сил, используемые для решения второго закона Ньютона.
Чертеж свободного тела показывает все векторы силы, действующие на объект. Масса обычно записывается внутри квадратика, при этом векторы силы направлены в сторону от квадратика.
решение
решение
$$\sum F=ma$$ $$-200\,\mathrm{Н}+300\,\mathrm{Н}+500\,\mathrm{Н}=ma$$ $$600\,\mathrm{Н}=(2\,\mathrm{кг})a$$ $$300 \mathrm{\tfrac{м}{с^2}}=a$$решение
$$\sum F=ma$$ $$F_{н} + F_{гр} = ma$$ $$F_{н} - 0.34\, \mathrm{Н} = (0.09\, \mathrm{кг})(0)$$ $$F_{н} - 0.34\,\mathrm{Н} = 0$$ $$F_{н} = 0.34 \, \mathrm{Н}$$решение
$$ \text{по вертикали}$$ $$\sum F=ma$$ $$22 \, \mathrm{Н} - 85 \, \mathrm{Н} = (16 \, \mathrm{кг})a$$ $$-63 \, \mathrm{Н} = (16 \, \mathrm{кг})a$$ $$-3.9 \, \mathrm{\tfrac{м}{с^2}} = a$$$$ \text{по горизонтали}$$ $$\sum F=ma$$ $$78 \, \mathrm{Н}+55 \, \mathrm{Н}-140 \, \mathrm{Н} = (16 \, \mathrm{кг})a$$ $$-7 \, \mathrm{Н} = (16 \, \mathrm{кг})a$$ $$-0.43 \, \mathrm{\tfrac{м}{с^2}} = a$$
решение
$$\sum F=ma$$ $$F_1+F_2=ma$$ $$-833+663 = m(2)$$ $$\frac{-170}{2} = \frac{m(2)}{2}$$ $$-85 \, \mathrm{кг} = m$$Отрицательная масса не может быть. Что же не так?
Ускорение отрицательное, потому что оно направлено вниз.
Сила притяжения
Масса - это мера инерции объекта. Масса также определяет силу притяжения. Из-за силы тяжести все объекты притягиваются друг к другу, но в основном мы замечаем притяжение к Земле, потому что она такая большая и нахдится близко.
$$F_г=mg $$
\(F_г\) = сила тяжести, вес [N, ньютоны, кг м/с²] вектор\(m\) = масса [кг]
\(g\) = ускорение силы тяжести на Земле = 9.8 [м/с²] вектор
Сила тяжести зависит только от массы объекта, потому что на поверхности Земли ускорение от силы тяжести одинаково для всех объектов. Если вы не находитесь на поверхности Земли, есть другой способ рассчитать силу тяжести.
решение
Трение воздуха создает силу, противодействующую движению. Перья имеют большую площадь поверхности по сравнению с их небольшой массой, поэтому у них больше трения о воздух.
Ускорение 9.8 м/с² на поверхности Земли - это всего лишь приблизительное значение. Гравитация Земли немного меняется в зависимости от того, где вы находитесь.
Таблица: Сравнительный вес в различных городах по всему миру
Местоположение | Ускорение in m/с² | Ускорение in фут/с² |
---|---|---|
Амстердам | 9.813 | 32.19 |
Афины | 9.800 | 32.15 |
Окленд | 9.799 | 32.15 |
Бангкок | 9.783 | 32.1 |
Брюссель | 9.811 | 32.19 |
Буэнос-Айрес | 9.797 | 32.14 |
Калькутта | 9.788 | 32.11 |
Кейптаун | 9.796 | 32.14 |
Чикаго | 9.803 | 32.16 |
Копенгаген | 9.815 | 32.2 |
Франкфурт | 9.810 | 32.19 |
Гавана | 9.788 | 32.11 |
Хельсинки | 9.819 | 32.21 |
Стамбул | 9.808 | 32.18 |
Джакарта | 9.781 | 32.09 |
Кувейт | 9.793 | 32.13 |
Лиссабон | 9.801 | 32.16 |
Лондон | 9.812 | 32.19 |
Лос-Анджелес | 9.796 | 32.14 |
Мадрид | 9.800 | 32.15 |
Манила | 9.784 | 32.1 |
Мехико-Сити | 9.779 | 32.08 |
Монреаль | 9.789 | 32.12 |
Город Нью-Йорк | 9.802 | 32.16 |
Никосия | 9.797 | 32.14 |
Осло | 9.819 | 32.21 |
Оттава | 9.806 | 32.17 |
Париж | 9.809 | 32.18 |
Рио-де-Жанейро | 9.788 | 32.11 |
Rome | 9.803 | 32.16 |
SСан-Франциско | 9.800 | 32.15 |
Сингапур | 9.781 | 32.09 |
Скопье | 9.804 | 32.17 |
Стокгольм | 9.818 | 32.21 |
Сидней | 9.797 | 32.14 |
Тайбэй | 9.790 | 32.12 |
Токио | 9.798 | 32.15 |
Ванкувер | 9.809 | 32.18 |
Вашингтон, округ Колумбия. | 9.801 | 32.16 |
Веллингтон | 9.803 | 32.16 |
Цюрих | 9.807 | 32.18 |
Вопрос: Какие факторы могут объяснить, почему измеренное ускорение свободного падения изменяется в разных местах на поверхности Земли?
решение

решение
$$F_г=mg$$ $$F_г=(0.44 \, \mathrm{кг} )(9.8\, \mathrm{\tfrac{м}{с^2}})$$ $$F_г=4.3 \, \mathrm{Н}$$
решение
$$F_г=mg$$ $$\frac{F_г}{g}=m$$ $$\frac{1.8 \,\mathrm{Н}}{9.8\, \mathrm{\tfrac{м}{с^2}}}=m$$ $$0.18 \, \mathrm{кг}=m$$Weight and Mass
Another word for the force of gravity is weight. An object on the Moon would weigh less than it does on Earth because of the lower gravity, but it would still have the same mass.
$$F_g = \mathrm{weight}$$Earth's gravity does extend into space, but it decreases with distance. It is about ~90% for astronauts in orbit around the Earth, but they don't notice any gravity because they are in a freefall.
Freefall means that you are just letting gravity accelerate you without any opposing forces. To keep from falling we are careful to always counter the force of gravity. This can be done with a parachute, or a jet pack, or just the ground.

answer
An object's mass doesn't change when it is falling.
Weight just means the force of gravity, which also doesn't change in a short freefall.

Local Massive Objects Surface Gravity
name | g (m/s²) | |
---|---|---|
|
Sun | 275 |
Mercury | 3.7 | |
Venus | 8.9 | |
Earth | 9.8 | |
Moon | 1.6 | |
Mars | 3.7 | |
Jupiter | 25.8 | |
|
Saturn | 10.4 |
|
Uranus | 8.7 |
Neptune | 11.2 |
solution
Weight and force of gravity mean the same thing. A planet's gravity field determines your weight, but not your mass.
-
$$\text{Earth}$$ $$F_{g}=mg$$ $$F_{g}=(0.95)(9.8)$$ $$F_{g}=9.31 \, \mathrm{N}$$
-
$$\text{Moon}$$ $$F_{g}=mg$$ $$F_{g}=(0.95)(1.6)$$ $$F_{g}=1.52 \, \mathrm{N}$$
Converting kilograms (kg) into pounds (lbs)
$$1 \, \mathrm{kg} = 2.2\, \mathrm{lbs} \quad \scriptsize \text{(On Earth)}$$ $$1 \, \mathrm{N} = 0.2248\, \mathrm{lbs}$$Pounds are a unit of force and and kilograms are a unit of mass. You can't convert directly between them because they are different concepts, but you can use the force of gravity equation to find a conversion that works for only Earth's surface.

solution
Mass doesn't depend on gravity, so it's the same everywhere.
$$ 1.2\,\mathrm{lbs} \left( \frac{1\,\mathrm{kg}}{2.2\,\mathrm{lbs}} \right)= 0.\overline{54}\,\mathrm{kg}$$ $$ m = 0. \overline{54} \, \mathrm{kg} $$What is the weight of the book in Newtons on Earth? On Mars?
solution
-
$$\text{weight on Earth}$$ $$F_{g}=mg$$ $$F_{g}=(0.\overline{54})(9.8)$$ $$F_{g}=5.35\, \mathrm{N}$$
-
$$\text{weight on Mars}$$ $$F_{g}=mg$$ $$F_{g}=(0.\overline{54})(3.711)$$ $$F_{g}=2.02\, \mathrm{N}$$
The Normal Force
Typically a normal force will balance the force of gravity to keep an object from accelerating up or down.
A normal force occurs when two objects are in contact. It is perpendicular to the point of contact. A normal force prevents objects from passing through each other.
A normal force will scale to a value that will keep the net force and acceleration zero.
Normal forces come from the combined effect of electromagnetic forces and the Pauli exclusion principle.
The electromagnetic force allows chemical bonds to form. These bonds give solid matter its rigid structure, which is required for normal forces.
At the atomic scale, particles can't pass through each other primarily because of a quantum mechanical effect called the Pauli exclusion principle . The Pauli exclusion principle is mostly responsible for keeping particles, like electrons, separate.
solution
$$F_{g}=mg$$ $$F_{g}=(100)(-9.8)$$ $$F_{g}=-980\, \mathrm{N}$$$$\sum F=ma$$ $$F_{N}-F_{g}=ma$$ $$F_{N} - 980=(100)(2)$$ $$F_{N}=1180\, \mathrm{N}$$
solution
In the simple case of a flat horizontal surface with no vertical acceleration the force of gravity will always be equal and opposite to the normal force.
$$F_{g}=mg$$ $$F_{g}=(20)(9.8)$$ $$F_{g}=196\, \mathrm{N}$$$$\sum F=ma$$ $$F_{N}-F_{g}=ma$$ $$F_{N} - 196=(20)(0) $$ $$F_{N}=196 \, \mathrm{N}$$
solution
-
$$F_{g}=mg$$ $$F_{g}=(20)(9.8)$$ $$F_{g}=196 \, \mathrm{N}$$
-
Separate the gravity vector into components parallel and perpendicular to the ground. Acceleration is zero in the perpendicular direction.
-
$$\text{perpendicular to ground}$$
$$F_{g\perp}=F_{g}\cos(20)$$ $$F_{g\perp}=(196)\cos(20)$$ $$F_{g\perp}=184 \, \mathrm{N}$$
$$\sum F_{\perp}=ma$$ $$-F_{g\perp}+F_{N}=ma$$ $$F_{N}=ma+F_{g\perp}$$ $$F_{N}=(20)(0) + 184$$ $$F_{N}=184 \, \mathrm{N}$$
-
$$\text{parallel to ground}$$
$$F_{g\parallel}=F_{g}\sin(20)$$ $$F_{g\parallel}=(196)\sin(20)$$ $$F_{g\parallel}=67 \, \mathrm{N}$$
$$\sum F_{\parallel}=ma$$ $$F_{g\parallel}=ma$$ $$(67)=(20)a$$ $$3.35 \, \mathrm{\tfrac{m}{s^{2}}}=a$$
Tension Forces
When a person is walking a dog they are able to apply a force on the dog with a leash. They use the tension on the leash to transfer that force from their hand to the dog.
Tension is the pulling force from a chain, string, or rope. Tension is useful for transferring a force over a distance. In most situations, the tension is the same for both ends.
solution
$$\sum F=ma$$ $$-F_{g} + T = ma$$ $$T = ma + F_{g}$$ $$T = ma + mg$$ $$T = (0.0005\, \mathrm{kg})(0.023\, \mathrm{\tfrac{m}{s^2}})+ (0.0005\, \mathrm{kg}) (9.8\, \mathrm{\tfrac{m}{s^2}})$$ $$T = 0.0049115\, \mathrm{N}$$solution
The tension force is equal and opposite for the person and crate.
$$\text{crate on right}$$ $$\sum F=ma$$ $$T = 10 (-0.1)$$ $$T = \color{#f05}-1 \, \mathrm{N}$$$$\text{person on left}$$ $$\sum F=ma$$ $$F_{\mathrm{person}} + T = ma$$ $$F_{\mathrm{person}} {\color{#f05}+ 1 \, \mathrm{N}} = (100 \, \mathrm{kg})(-0.1\, \mathrm{\tfrac{m}{s^2}})$$ $$F_{\mathrm{person}} + 1\, \mathrm{N} = -10\, \mathrm{N}$$ $$F_{\mathrm{person}} = -11\,\mathrm{N}$$
solution
$$\text{dog: horizontal}$$ $$\sum F=ma$$ $$-T_x + F_{\mathrm{dog}} = 0$$ $$-T_x + 100 \, \mathrm{N} = 0$$ $$T_x= 100 \,\mathrm{N}$$The 100 N is only the x-part of the tension force vector. We can find the total tension force with the Pythagorean theorem. At 45° the x and y parts of the force are the same.
$$T^2 = 100^2+100^2$$ $$T^2 = 20\,000$$ $$T = 141 \, \mathrm{N}$$solution
$$ \text{box}$$ $$\sum F=ma$$ $$F_{\mathrm{tension}}=(10)(-0.5)$$ $$F_{\mathrm{tension}}=-5\, \mathrm{N}$$The tension force on the string is equal but opposite for the squirrel and box.
$$ \text{squirrel}$$ $$\sum F=ma$$ $$F_{\mathrm{squirrel}} + F_{\mathrm{tension}}=ma$$ $$F_{\mathrm{squirrel}} + 5=(0.4)(-0.5)$$ $$F_{\mathrm{squirrel}}=-0.2-5$$ $$F_{\mathrm{squirrel}}=-5.2 \, \mathrm{N}$$The negative sign tells us that the squirrel's force is pointed left.
$$F_{\mathrm{squirrel}}=5.2 \, \mathrm{N} \text{ left}$$Assume no friction, no air resistance, Earth gravity, and a massless rope.
hint
Both free body diagrams share the same tension and acceleration. Build two equations with Newton's second law and solve a system of equations for T and a. While T and a are the same magnitude they have different directions, so watch the sign of acceleration in particular.
This Khan academy video covers this problem in more depth.
solution
$$\text{20kg box: horizontal}$$ $$\sum F=ma_x$$ $$T = ma_x$$ $$T = \color{#d3a}20a_x$$$$\text{10kg box: vertical}$$ $$\sum F=ma_y$$ $$T - F_g = ma_y$$ $$T - mg = ma_y$$ $$T - (10)(9.8) = 10a_y$$
$${\color{#d3a}20a_x} - 98 = 10a_y$$
$$a_x = -a_y$$
$${\color{#d3a}-20a_y} - 98 = 10a_y$$ $$-98 = 10a_y + 20a_y$$ $$-98 = 30a_y$$ $$-3.2\overline{6} \, \mathrm{\tfrac{m}{s^2}} = a_y$$
solution (treating system as one mass)
$$\text{gravity only pulls on the 10kg part}$$ $$F_g = m g$$ $$F_g = (10 \, \mathrm{kg})(9.8\, \mathrm{\tfrac{m}{s^2}})$$ $$F_g = \color{#d3a}98 \, \mathrm{N}$$$$\text{use both masses to find acceleration in the vertical}$$ $$\sum F=ma$$ $$F_g = (10\, \mathrm{kg}+20\, \mathrm{kg}) a$$ $$F_g = (30\, \mathrm{kg}) a$$ $$98\, \mathrm{N} = (30\,\mathrm{kg}) a$$ $$-3.2\overline{6} \, \mathrm{\tfrac{m}{s^2}}= a$$
solution
We have two variables and two equations, this means we can plug one equation into the other. The Tension is the same for each body. The accelerations are the same, but in opposite directions, so we need to make one acceleration negative.
The 25kg object is falling down at 4.2 m/s². The 10kg is rising up at 4.2 m/s².