Силы

Чертежи свободного тела - это метод, который помогает визуализировать векторы сил, используемые для решения второго закона Ньютона.

m F F m F F F F F F m F m F F F

Чертеж свободного тела показывает все векторы силы, действующие на объект. Масса обычно записывается внутри квадратика, при этом векторы силы направлены в сторону от квадратика.

Пример: Начерти свободную схему тела человека весом 83 кг, держащегося за веревку в игре "Перетягивание каната". Веревка толкает их с оставшимся усилием в 520 Н. Ноги человека противодействуют этому с наклоном на 540 Н вправо.
решение 83 кг 520 Н 540 Н
2.0 кг 200 Н 500 Н 300 Н Пример: Используйте чертеж свободного тела для расчета ускорения массы.
решение $$\sum F=ma$$ $$-200\,\mathrm{Н}+300\,\mathrm{Н}+500\,\mathrm{Н}=ma$$ $$600\,\mathrm{Н}=(2\,\mathrm{кг})a$$ $$300 \mathrm{\tfrac{м}{с^2}}=a$$
0.09 кг 0.34 Н F= ? Пример: книга Энди Вейра "Марсианин" (масса = 0.09 кг) лежит на столе (ускорение равно нулю). Сила тяжести направлена вниз и равна 0.34 Н. Какиая сила требуется, чтобы книга оставалась неподвижной на столе?
решение $$\sum F=ma$$ $$F_{н} + F_{гр} = ma$$ $$F_{н} - 0.34\, \mathrm{Н} = (0.09\, \mathrm{кг})(0)$$ $$F_{н} - 0.34\,\mathrm{Н} = 0$$ $$F_{н} = 0.34 \, \mathrm{Н}$$
16 kg 85 N 22 N 140 N 55 N 78 N Пример: Используйте чертеж тела в свободном полете, чтобы рассчитать ускорение как по горизонтали, так и по вертикали.
решение $$ \text{по вертикали}$$ $$\sum F=ma$$ $$22 \, \mathrm{Н} - 85 \, \mathrm{Н} = (16 \, \mathrm{кг})a$$ $$-63 \, \mathrm{Н} = (16 \, \mathrm{кг})a$$ $$-3.9 \, \mathrm{\tfrac{м}{с^2}} = a$$
$$ \text{по горизонтали}$$ $$\sum F=ma$$ $$78 \, \mathrm{Н}+55 \, \mathrm{Н}-140 \, \mathrm{Н} = (16 \, \mathrm{кг})a$$ $$-7 \, \mathrm{Н} = (16 \, \mathrm{кг})a$$ $$-0.43 \, \mathrm{\tfrac{м}{с^2}} = a$$
Пример: Красный ящик падает, но парашют замедляет его ускорение всего до 2 м/с². Сила тяжести равна 833 Н. Парашют тянет вверх с силой 663 Н. Начертите схему и используйте ее, чтобы определить массу ящика.
решение m = ? 833 Н 663 Н $$\sum F=ma$$ $$F_1+F_2=ma$$ $$-833+663 = m(2)$$ $$\frac{-170}{2} = \frac{m(2)}{2}$$ $$-85 \, \mathrm{кг} = m$$

Отрицательная масса не может быть. Что же не так?
Ускорение отрицательное, потому что оно направлено вниз.

$$\frac{-170}{-2} = \frac{m(-2)}{-2}$$ $$85 \, \mathrm{кг} = m$$

Сила притяжения

Масса - это мера инерции объекта. Масса также определяет силу притяжения. Из-за силы тяжести все объекты притягиваются друг к другу, но в основном мы замечаем притяжение к Земле, потому что она такая большая и нахдится близко.


m F g

$$F_г=mg $$

\(F_г\) = сила тяжести, вес [N, ньютоны, кг м/с²] вектор
\(m\) = масса [кг]
\(g\) = ускорение силы тяжести на Земле = 9.8 [м/с²] вектор

Сила тяжести зависит только от массы объекта, потому что на поверхности Земли ускорение от силы тяжести одинаково для всех объектов. Если вы не находитесь на поверхности Земли, есть другой способ рассчитать силу тяжести.

Вопрос: Почему перья падают медленнее, чем кирпичи?
решение

Трение воздуха создает силу, противодействующую движению. Перья имеют большую площадь поверхности по сравнению с их небольшой массой, поэтому у них больше трения о воздух.

Ускорение 9.8 м/с² на поверхности Земли - это всего лишь приблизительное значение. Гравитация Земли немного меняется в зависимости от того, где вы находитесь.

Таблица: Сравнительный вес в различных городах по всему миру
Местоположение Ускорение in m/с² Ускорение in фут/с²
Амстердам 9.813 32.19
Афины 9.800 32.15
Окленд 9.799 32.15
Бангкок 9.783 32.1
Брюссель 9.811 32.19
Буэнос-Айрес 9.797 32.14
Калькутта 9.788 32.11
Кейптаун 9.796 32.14
Чикаго 9.803 32.16
Копенгаген 9.815 32.2
Франкфурт 9.810 32.19
Гавана 9.788 32.11
Хельсинки 9.819 32.21
Стамбул 9.808 32.18
Джакарта 9.781 32.09
Кувейт 9.793 32.13
Лиссабон 9.801 32.16
Лондон 9.812 32.19
Лос-Анджелес 9.796 32.14
Мадрид 9.800 32.15
Манила 9.784 32.1
Мехико-Сити 9.779 32.08
Монреаль 9.789 32.12
Город Нью-Йорк 9.802 32.16
Никосия 9.797 32.14
Осло 9.819 32.21
Оттава 9.806 32.17
Париж 9.809 32.18
Рио-де-Жанейро 9.788 32.11
Rome 9.803 32.16
SСан-Франциско 9.800 32.15
Сингапур 9.781 32.09
Скопье 9.804 32.17
Стокгольм 9.818 32.21
Сидней 9.797 32.14
Тайбэй 9.790 32.12
Токио 9.798 32.15
Ванкувер 9.809 32.18
Вашингтон, округ Колумбия. 9.801 32.16
Веллингтон 9.803 32.16
Цюрих 9.807 32.18

Вопрос: Какие факторы могут объяснить, почему измеренное ускорение свободного падения изменяется в разных местах на поверхности Земли?
решение

  • На большей высоте гравитация немного слабее, потому что вы находитесь дальше от центра Земли.

  • Вблизи экватора гравитация ощущается слабее, потому что вращение Земли создает центробежную силу.
  • The Three-Body Problem Пример: Задача о трех телах, написанная Цысин Лю, имеет массу 0.44 кг. Какой силой притяжения обладает эта книга?
    решение $$F_г=mg$$ $$F_г=(0.44 \, \mathrm{кг} )(9.8\, \mathrm{\tfrac{м}{с^2}})$$ $$F_г=4.3 \, \mathrm{Н}$$
    Cat's Cradle Пример: Какой массой обладает книга Курта Воннегута "Колыбель для кошки", если на нее действует сила тяжести 1.8 Н?
    решение $$F_г=mg$$ $$\frac{F_г}{g}=m$$ $$\frac{1.8 \,\mathrm{Н}}{9.8\, \mathrm{\tfrac{м}{с^2}}}=m$$ $$0.18 \, \mathrm{кг}=m$$

    Weight and Mass

    Another word for the force of gravity is weight. An object on the Moon would weigh less than it does on Earth because of the lower gravity, but it would still have the same mass.

    $$F_g = \mathrm{weight}$$

    Earth's gravity does extend into space, but it decreases with distance. It is about ~90% for astronauts in orbit around the Earth, but they don't notice any gravity because they are in a freefall.

    Freefall means that you are just letting gravity accelerate you without any opposing forces. To keep from falling we are careful to always counter the force of gravity. This can be done with a parachute, or a jet pack, or just the ground.

    The Name of the Wind Question: The Name of the Wind by Patrick Rothfuss has a mass of 0.34 kg. How does its mass and weight change in a freefall on Earth?
    answer

    An object's mass doesn't change when it is falling.

    Weight just means the force of gravity, which also doesn't change in a short freefall.

    Seveneves Example: The hardcover version of Seveneves by Neal Stephenson has a mass of 0.95 kg. What is the force of gravity felt by the book on Earth? What about on the Moon?
    Local Massive Objects Surface Gravity
    name g (m/s²)
    Sun 275
    Mercury 3.7
    Venus 8.9
    Earth 9.8
    Moon 1.6
    Mars 3.7
    Jupiter 25.8
    Saturn 10.4
    Uranus 8.7
    Neptune 11.2
    solution

    Weight and force of gravity mean the same thing. A planet's gravity field determines your weight, but not your mass.

    • $$\text{Earth}$$ $$F_{g}=mg$$ $$F_{g}=(0.95)(9.8)$$ $$F_{g}=9.31 \, \mathrm{N}$$
    • $$\text{Moon}$$ $$F_{g}=mg$$ $$F_{g}=(0.95)(1.6)$$ $$F_{g}=1.52 \, \mathrm{N}$$
    Converting kilograms (kg) into pounds (lbs) $$1 \, \mathrm{kg} = 2.2\, \mathrm{lbs} \quad \scriptsize \text{(On Earth)}$$ $$1 \, \mathrm{N} = 0.2248\, \mathrm{lbs}$$

    Pounds are a unit of force and and kilograms are a unit of mass. You can't convert directly between them because they are different concepts, but you can use the force of gravity equation to find a conversion that works for only Earth's surface.

    Uprooted Example: Uprooted by Naomi Novik is resting on a table. The shipping weight is 1.2 pounds. What is the book's mass in kilograms on Earth? On Mars?
    solution

    Mass doesn't depend on gravity, so it's the same everywhere.

    $$ 1.2\,\mathrm{lbs} \left( \frac{1\,\mathrm{kg}}{2.2\,\mathrm{lbs}} \right)= 0.\overline{54}\,\mathrm{kg}$$ $$ m = 0. \overline{54} \, \mathrm{kg} $$

    What is the weight of the book in Newtons on Earth? On Mars?
    solution
    • $$\text{weight on Earth}$$ $$F_{g}=mg$$ $$F_{g}=(0.\overline{54})(9.8)$$ $$F_{g}=5.35\, \mathrm{N}$$
    • $$\text{weight on Mars}$$ $$F_{g}=mg$$ $$F_{g}=(0.\overline{54})(3.711)$$ $$F_{g}=2.02\, \mathrm{N}$$

    The Normal Force

    Typically a normal force will balance the force of gravity to keep an object from accelerating up or down.

    m F N F g

    A normal force occurs when two objects are in contact. It is perpendicular to the point of contact. A normal force prevents objects from passing through each other.

    A normal force will scale to a value that will keep the net force and acceleration zero.

    Normal forces come from the combined effect of electromagnetic forces and the Pauli exclusion principle.

    The electromagnetic force allows chemical bonds to form. These bonds give solid matter its rigid structure, which is required for normal forces.

    At the atomic scale, particles can't pass through each other primarily because of a quantum mechanical effect called the Pauli exclusion principle . The Pauli exclusion principle is mostly responsible for keeping particles, like electrons, separate.

    m

    Press E to activate the mass. Then press WASD to apply forces to the mass. Imagine that gravity is pointed towards the bottom of the page.

    Question: What force keeps the mass from exiting the screen?
    answer

    The normal force.


    Question: Why does pressing A and D at the same time do nothing?
    answer

    The left and right force cancel each other out.

    Example: You are accelerating up in an elevator at 2 m/s². If your mass is 100 kg, what is the normal force you feel from the elevator?
    solution 100 kg F g = 980 N F N = ? $$F_{g}=mg$$ $$F_{g}=(100)(-9.8)$$ $$F_{g}=-980\, \mathrm{N}$$
    $$\sum F=ma$$ $$F_{N}-F_{g}=ma$$ $$F_{N} - 980=(100)(2)$$ $$F_{N}=1180\, \mathrm{N}$$
    Example: A 20 kg box is at rest on a horizontal sidewalk. Find the force of gravity and the normal force on the box.
    solution

    In the simple case of a flat horizontal surface with no vertical acceleration the force of gravity will always be equal and opposite to the normal force.

    20 kg F N F g $$F_{g}=mg$$ $$F_{g}=(20)(9.8)$$ $$F_{g}=196\, \mathrm{N}$$
    $$\sum F=ma$$ $$F_{N}-F_{g}=ma$$ $$F_{N} - 196=(20)(0) $$ $$F_{N}=196 \, \mathrm{N}$$
    20 kg F N Fg Example: A 20 kg box is at rest on a steep sidewalk. The sidewalk is at an angle 20 degrees from horizontal. Find the force of gravity and the normal force on the box. What is the acceleration of the box? (assume no friction)
    solution
    • $$F_{g}=mg$$ $$F_{g}=(20)(9.8)$$ $$F_{g}=196 \, \mathrm{N}$$

    • Fg Fg⊥ Fg∥

    Separate the gravity vector into components parallel and perpendicular to the ground. Acceleration is zero in the perpendicular direction.

    • $$\text{perpendicular to ground}$$

      $$F_{g\perp}=F_{g}\cos(20)$$ $$F_{g\perp}=(196)\cos(20)$$ $$F_{g\perp}=184 \, \mathrm{N}$$
      $$\sum F_{\perp}=ma$$ $$-F_{g\perp}+F_{N}=ma$$ $$F_{N}=ma+F_{g\perp}$$ $$F_{N}=(20)(0) + 184$$ $$F_{N}=184 \, \mathrm{N}$$
    • $$\text{parallel to ground}$$

      $$F_{g\parallel}=F_{g}\sin(20)$$ $$F_{g\parallel}=(196)\sin(20)$$ $$F_{g\parallel}=67 \, \mathrm{N}$$
      $$\sum F_{\parallel}=ma$$ $$F_{g\parallel}=ma$$ $$(67)=(20)a$$ $$3.35 \, \mathrm{\tfrac{m}{s^{2}}}=a$$
    20 kg F N = 184 N Fg = 196 N

    Tension Forces

    When a person is walking a dog they are able to apply a force on the dog with a leash. They use the tension on the leash to transfer that force from their hand to the dog.

    T T

    Tension is the pulling force from a chain, string, or rope. Tension is useful for transferring a force over a distance. In most situations, the tension is the same for both ends.

    Example: A helium balloon is attached to a 0.5 g paper clip. If the balloon and paper clip are accelerating up at 0.023 m/s², what is the tension on the paper clip from the balloon in Newtons?
    solution 0.0005 kg T F g $$\sum F=ma$$ $$-F_{g} + T = ma$$ $$T = ma + F_{g}$$ $$T = ma + mg$$ $$T = (0.0005\, \mathrm{kg})(0.023\, \mathrm{\tfrac{m}{s^2}})+ (0.0005\, \mathrm{kg}) (9.8\, \mathrm{\tfrac{m}{s^2}})$$ $$T = 0.0049115\, \mathrm{N}$$
    Example: A 100 kg person is pulling a 10 kg crate with a rope (ignore the mass of the rope). Both the person and the crate are accelerating to the left at 0.1 m/s². What force is the person producing in order to accelerate to the left?
    solution 100 kg F person T 10 kg T

    The tension force is equal and opposite for the person and crate.

    $$\text{crate on right}$$ $$\sum F=ma$$ $$T = 10 (-0.1)$$ $$T = \color{#f05}-1 \, \mathrm{N}$$
    $$\text{person on left}$$ $$\sum F=ma$$ $$F_{\mathrm{person}} + T = ma$$ $$F_{\mathrm{person}} {\color{#f05}+ 1 \, \mathrm{N}} = (100 \, \mathrm{kg})(-0.1\, \mathrm{\tfrac{m}{s^2}})$$ $$F_{\mathrm{person}} + 1\, \mathrm{N} = -10\, \mathrm{N}$$ $$F_{\mathrm{person}} = -11\,\mathrm{N}$$
    T x 10 kg T F dog Example: You are walking your dog with the leash at a 45 degree angle down towards the dog. Neither your nor the dog are accelerating. The dog is pulling on the leash forward with a force of 100 N. Calculate the x part of the tension force on the leash. Then calculate the total tension force.
    solution $$\text{dog: horizontal}$$ $$\sum F=ma$$ $$-T_x + F_{\mathrm{dog}} = 0$$ $$-T_x + 100 \, \mathrm{N} = 0$$ $$T_x= 100 \,\mathrm{N}$$

    The 100 N is only the x-part of the tension force vector. We can find the total tension force with the Pythagorean theorem. At 45° the x and y parts of the force are the same.

    $$T^2 = 100^2+100^2$$ $$T^2 = 20\,000$$ $$T = 141 \, \mathrm{N}$$
    0.4 kg F 10 kg Example: A 0.4 kg squirrel is pulling a 10 kg box with a string. The squirrel and box are accelerating to the left at 0.5 m/s². What is the force of tension on the string? What force is the squirrel producing in order to accelerate to the left?
    solution $$ \text{box}$$ $$\sum F=ma$$ $$F_{\mathrm{tension}}=(10)(-0.5)$$ $$F_{\mathrm{tension}}=-5\, \mathrm{N}$$

    The tension force on the string is equal but opposite for the squirrel and box.

    $$ \text{squirrel}$$ $$\sum F=ma$$ $$F_{\mathrm{squirrel}} + F_{\mathrm{tension}}=ma$$ $$F_{\mathrm{squirrel}} + 5=(0.4)(-0.5)$$ $$F_{\mathrm{squirrel}}=-0.2-5$$ $$F_{\mathrm{squirrel}}=-5.2 \, \mathrm{N}$$

    The negative sign tells us that the squirrel's force is pointed left.

    $$F_{\mathrm{squirrel}}=5.2 \, \mathrm{N} \text{ left}$$
    20 kg 10 kg T T Example: Use the diagram to predict the acceleration of the masses.
    Assume no friction, no air resistance, Earth gravity, and a massless rope.
    hint
    20 kg T = ? F N F g 10 kg T = ? F g = ?

    Both free body diagrams share the same tension and acceleration. Build two equations with Newton's second law and solve a system of equations for T and a. While T and a are the same magnitude they have different directions, so watch the sign of acceleration in particular.

    This Khan academy video covers this problem in more depth.

    solution $$\text{20kg box: horizontal}$$ $$\sum F=ma_x$$ $$T = ma_x$$ $$T = \color{#d3a}20a_x$$
    $$\text{10kg box: vertical}$$ $$\sum F=ma_y$$ $$T - F_g = ma_y$$ $$T - mg = ma_y$$ $$T - (10)(9.8) = 10a_y$$
    $${\color{#d3a}20a_x} - 98 = 10a_y$$
    $$a_x = -a_y$$
    $${\color{#d3a}-20a_y} - 98 = 10a_y$$ $$-98 = 10a_y + 20a_y$$ $$-98 = 30a_y$$ $$-3.2\overline{6} \, \mathrm{\tfrac{m}{s^2}} = a_y$$
    solution (treating system as one mass) $$\text{gravity only pulls on the 10kg part}$$ $$F_g = m g$$ $$F_g = (10 \, \mathrm{kg})(9.8\, \mathrm{\tfrac{m}{s^2}})$$ $$F_g = \color{#d3a}98 \, \mathrm{N}$$
    $$\text{use both masses to find acceleration in the vertical}$$ $$\sum F=ma$$ $$F_g = (10\, \mathrm{kg}+20\, \mathrm{kg}) a$$ $$F_g = (30\, \mathrm{kg}) a$$ $$98\, \mathrm{N} = (30\,\mathrm{kg}) a$$ $$-3.2\overline{6} \, \mathrm{\tfrac{m}{s^2}}= a$$
    10 kg 25 kg Example: Two blocks are attached to each other with a rope hanging over a wheel. Find the acceleration of each body. Ignore friction, and assume the wheel and rope have a negligible mass.
    solution
    $$\text{10 kg block}$$ $$\sum F = ma$$ $$T-mg = ma$$ $$T-(10)(9.8) = ma$$ $$T-98 = 10a$$ $$T = 10a+98$$
    $$\text{25 kg block}$$ $$\sum F = ma$$ $$T-mg = ma$$ $$T-(25)(9.8) = 25a$$ $$T-245 = 25a$$ $$T = 25a+245$$

    We have two variables and two equations, this means we can plug one equation into the other. The Tension is the same for each body. The accelerations are the same, but in opposite directions, so we need to make one acceleration negative.

    $$T = 10({\color{#f05}-a})+98$$
    $$T = 25a+245$$
    $$10({\color{#f05}-a})+98 = 25a+245 $$ $$-35a = 147$$ $$a = -4.2 \, \tfrac{m}{s^2}$$

    The 25kg object is falling down at 4.2 m/s². The 10kg is rising up at 4.2 m/s².